
Pulsed Field Gradients in Simulations of One- and

g
e
p
p
s
r
b
e
p
m
c
t
T
b
c
e
e
t
N

(
s
e
e

b
t
M
d
l
t
p
e
(
e
p
c

e

E

Journal of Magnetic Resonance137,186–195 (1999)
Article ID jmre.1998.1665, available online at http://www.idealibrary.com on

1
C
A

Two-Dimensional NMR Spectra

Ghirmai H. Meresi, Miroslava Cuperlovic, William E. Palke,1 and J. T. Gerig1

Department of Chemistry, University of California, Santa Barbara, Santa Barbara, California 93106

Received July 23, 1998; revised November 6, 1998

A method for the inclusion of the effects of z-axis pulsed field suppression (13, 14), selective excitation (15), phase cycl
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radients in computer simulations of an arbitrary pulsed NMR
xperiment with spin 1

2 nuclei is described. Recognizing that the
hase acquired by a coherence following the application of a z-axis
ulsed field gradient bears a fixed relation to its order and the
patial position of the spins in the sample tube, the sample is
egarded as a collection of volume elements, each phase-encoded
y a characteristic, spatially dependent precession frequency. The
volution of the sample’s density matrix is thus obtained by com-
uting the evolution of the density matrix for each volume ele-
ent. Following the last gradient pulse, these density matrices are

ombined to form a composite density matrix which evolves
hrough the rest of the experiment to yield the observable signal.
his approach is implemented in a program which includes capa-
ilities for rigorous inclusion of spin relaxation by dipole–dipole,
hemical shift anisotropy, and random field mechanisms, plus the
ffects of arbitrary RF fields. Mathematical procedures for accel-
rating these calculations are described. The approach is illus-
rated by simulations of representative one- and two-dimensional
MR experiments. © 1999 Academic Press

Key Words: coherence selection; dipole– dipole relaxation;
DQFC) double quantum-filtered COSY; (HSQC) heteronuclear
ingle quantum coherence; NOE; propagators; pulsed field gradi-
nts; relaxation; relaxation cross terms; spectral simulation; spin
cho.

INTRODUCTION

The use of pulsed field gradients in NMR experiments d
ack over decades to the work of Stejskal and Tanner (1) with

heir seminal paper for the measurement of diffusion const
any years later, Maudsleyet al. (2) and Baxet al. (3, 4)
emonstrated the use of gradients for coherence pathwa

ection. Solution of a number of technical problems, prima
he nonreproducibility of gradient pulses and the effec
erturbing magnetic fields generated in nearby conducto
ddy currents (5, 6), led to the pioneering work by Hurdet al.
7, 8) and by van Zijl and Moonen (9, 10) that established th
fficacy of pulsed field gradients in high-resolution NMR
eriments. Gradient experiments are now often the metho
hoice for coherence pathway selection (11, 12), solvent signa
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limination or reduction, and artifact elimination (16, 17). Ba-
ic considerations in the use of pulsed field gradients have
eviewed (12, 18), as has the application of gradients in m
idimensional studies of biological systems (19).

Hardware developments have now reached a stage w
rtifact-free multidimensional high-resolution NMR expe
ents that use pulsed field gradients are routine. In con
vailable computer techniques for simulation of the resul
uch experiments have not kept pace. Dozens of NMR s
ation programs are, of course, available from instrument m
facturers, from the World Wide Web, or by private arran
ents. Most of these include relaxation in a nonrigorous

typically via an effectiveT1 or T2 relaxation time) or do no
rovide capabilities to take into account other experime
onsiderations such as finite RF power. We are unaware o
omputer simulation capabilities for experiments that inc
ulsed field gradients and treat relaxation in a rigorous ma
The present work enables computer simulations of arbi

xperiments that include nuclear spin relaxation effects
ole–dipole, chemical shift anisotropy, and random fi
echanisms, as well as cross terms between dipole–dipo
SA mechanisms), cw and pulsed RF fields, andz-axis pulsed
eld gradients. In describing the approach taken, we
stablish our notation and obtain analytical results for
ffects of the pulsed field gradients on the density matrix. N

he validity of our method and its dependence on var
imulation parameters are explored. In the last section
llustrate the application of the code developed to simulat
f several one- and two-dimensional spectra. It is concl

hat the rather straightforward approach we describe ra
rovides reliable simulations of high-resolution NMR exp
ents that employz-axis pulsed field gradients.

THEORETICAL BACKGROUND

Any NMR experiment is a sequence of time intervals du
hich the spins may experience the application of var
tatic or time-varying fields or may simply be undergo
pontaneous processes such as Larmor precession or
tion. In a simulation of an experiment, the behavior of
pins during each of these periods is calculated in serie

20;



f nt
p et
fi w
c e
g t)
g -
s d
r a
c Th
p
s a
p tter
w -
m r
z

s
s o
s fir
g nsi
m sen
t am
p s,
o s
e th
d ld
t olu
t cte
d en
p as
e

res
e rad
e

The first time-independent term consists of the Zeeman, scalar
c

T the
s ent
f

w
d It
i ame
f coor-
d of
t

w r
f ong
f tum
o

w is
a t can
p

is
g

his
e di-
a
2 m.
E s the
s
t this

tiza
t ien
T die
s

187PULSED FIELD GRADIENTS IN SIMULATED NMR SPECTRA
ollowing the evolution of the density matrix. A field gradie
ulse is an interval during which the static external magn
eld is rendered deliberately spatially inhomogeneous. We
onsider only linear gradients along thez-axis. Hence, th
radient field can be written asGz, with G being the (constan
radient strength in tesla/meter, and thez-coordinate is mea
ured in meters. The effect of the gradient can be visualize
ecognizing that at each value ofz the sample experiences
haracteristic magnetic field during the gradient pulse.
recession rate of a coherence will depend on thez-coordinate
o that after a gradient pulse of durationt, the phase of
-quantum coherence will be arranged in a helical pa
hose pitch is determined bygGtp, with g being the gyro
agnetic ratio of the nucleus (18, 20). This effect of a linea

-axis gradient is illustrated in Fig. 1.
For a simulation, we divide the region of interest intoN

egments and follow the density matrixs(k) for the kth
egment (0# k # [N 2 1]) through the experiment. N
patial inhomogeneity is generated in the sample until the
radient pulse, and up to that point in the simulation the de
atrices of all volume elements will be identical and es

ially equal to the density matrix representing the entire s
le. Calculation of evolutions in response to pulses, delay
ther gradient pulses after the first gradient pulse proceed
ach slice separately. At the end of the final gradient,
ensity matrices from theN segments are combined to yie

he complete system density matrix. Calculation of the ev
ion of the complete density matrix generates the expe
etectable signal. Performing the summation over segm
rior to the final gradient results in loss of memory of the ph
ncoding that is indicated in Fig. 1.
The full Hamiltonian for a nuclear spin system in the p

nce of a static external magnetic field, magnetic field g
nts, and a radiofrequency field can be written as (20–24)

H~t! 5 H0 1 HG 1 H1~t! 1 H2~t!. [1]

FIG. 1. A representation of the orientations of a collection of magne
ion vectors following the application of a 90° pulse and a pulsed field grad
he pitch of the helix is determined by the gradient pulse length, the gra
trength, and the gyromagnetic ratio of the spins.
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oupling, and isotropic chemical shielding terms:

H0 5 2\B0 O
i

spins

g i@1 2 s iso~i !#I Z~i !

1 O
i

spins O
j.i

spins

Jiso~ij !I (i) z I ~ j !. [2]

he second term in Eq. [1] describes the interaction of
pins with the external magnetic field gradient; it is differ
or each slice, and for thekth slice it is given by

HG~k! 5 2\Gz~k! O
i

spins

g i@1 2 s iso~i !#I Z~i !, [3]

hereG is the strength of the magnetic field gradient andz(k)
enotes thez-coordinate of thekth slice in the sample tube.

s worth noting that the gradient Hamiltonian has the s
orm as the Zeeman term except for its dependence on
inatez. The third term in Eq. [1] describes the interaction

he spins with the radiofrequency pulses,

H1~t! 5 2\Brfe
iFZVrft/\Mfe2iFZVrft/\, [4]

hereBrf is the amplitude of the RF field, andVrf is its angula
requency.Mf is the component of the magnetic moment al

in thexy-plane and is related to the spin angular momen
perators by

Mf 5 RZ~f! O
i

spins

g i I X~i ! RZ
21~f!, [5]

hereRZ~f! 5 e2ifFZ/\. The remaining term in Eq. [1]
lso time-dependent and arises from interactions tha
roduce spin relaxation.
The time evolution of the nuclear spin density matrix

overned by the Liouville–von Neumann equation (20–24):

i\
­s

­t
5 @H, s#. [6]

Including the effects of relaxation in the solution of t
quation is computationally costly, typically requiring the
gonalization of a Redfield (25) matrix of dimensions 22n 3
2n, with n being the number of nuclei in the spin syste
specially because our treatment of gradients require
olution of Eq. [6] separately for each slice along thez-axis in
he sample, an efficient procedure must be devised for

-
t.
nt
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188 MERESI ET AL.
urpose. Use of superoperator propagators is crucial in m
his problem tractable, because it simplifies computation o
volution of the density matrix to a simple matrix multiplic

ion for each slice (26, 27). The extension of propagator me
ds to include relaxation was presented by Smithet al. (28).
e discuss the relaxation propagator and explain our p

ure for its implementation in Appendix A.
Computation of an FID, done point-by-point, is anot

epetitive and time-consuming aspect of the simulation
MR experiments that is fruitfully approached in terms o
ropagator. Appendix B describes our application of prop

ors to this situation.

COMPUTATIONAL STUDIES

It is helpful to consider an example in order to show h
ropagator techniques have been applied in this work to
lations of experiments involving gradient pulses. Suppos
xperiment begins with the system at equilibrium and con
f three steps (pulses and/or delays) before the initial grad
he effect of each step in the sequence is simply the m
ultiplication of the propagator for that step3 j times the

FIG. 2. (A) Pulse sequence used for simulation of a phosphorus gr
escribed by Witherset al. (29). The phosphorus frequency was 109 MH
uncan (30), andJPF 5 2890 Hz. A rotational correlation time (tc) of 73
ineshapes obtained by Fourier transformation of the FID calculated fo
re included, but cross terms between dipole and CSA terms are neg
elaxation are computed, including dipole–CSA cross terms;d 5 0.2 ms; (iii)
ll plots. The observed lineshape is in rough accord with experimental
ng
e

e-

r
f
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-
he
ts
nt.
ix

ensity matrix at the start of that step. Thus, our density m
t the end of the three preliminary steps is

s 5 333231seq. [7]

ecause a gradient pulse has a different effect on each sl
he sample, the propagator for a gradient&(k) depends on th
lice indexk. Hence, the density matrix after the first grad
lso depends uponk:

s~k! 5 &1~k!333231seq. [8]

f our initial gradient is followed by three more steps and t
final gradient, the density matrix for the complete syste

he end of this entire sequence is the combination of the de
atrices in each segment:

s 5 O
k50

N21

@&2~k!363534&1~k!333231#
seq

N
. [9]

his combined density matrix can then be followed through

ent-recalled echo experiment with the protein-bound fluorophosphate (
SA parameters for fluorine and phosphorus were taken from the comp
nd gradients of62 G/cm with 20 slices were used for the simulations.

is system: (i) Fluorine and phosphorus CSA and dipolar contributions tolaxation
ed;0.2 ms; (ii) all fluorine and phosphorus CSA and dipolar contribution
same as for simulation (ii), butd 5 2.0 ms. The vertical scale is the same
ervations.
adi
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r th
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189PULSED FIELD GRADIENTS IN SIMULATED NMR SPECTRA
an be introduced. The propagator for any step that is t
epeated can be stored and reused; this includes any com
ions of repeated steps. For example, the product of363534

an be evaluated and included as a single matrix multiplica
In a simulation the entire range of phases produced b

radients must be sampled, because it is through the can
ions and reinforcements of these phases that the gra
xperimentally have their effect. Thus, in implementing

9], the simulation must sample the range of phases from
mp. An integral number of loopsm of the helix must b

ncluded in order to sample these phases uniformly. It is
vident from Fig. 1 that additional loops of a particular helix
hase angles, e.g., 2p # f # 4p, are redundant with the fir

oop. Consequently, full phase sampling might be achie
ith surprisingly few slices. However, the number of he

oops and the number of segments required to sample p
eliably depend on the details of the spin system under
ideration.
For a homonuclear system, single quantum cohere

1QC) precess at the slowest rate, so as a 1QC prec
hrough 2p, a homonuclear coherence of orderp ( pQC) pre-
esses through 2pp. If we let L be the number of loops us
o represent a 1QC, the phase angles sampled for a simu
singN segments are (for apQC)

uk 5
2ppL

N
k, k 5 0, 1, 2, . . . ,N 2 1. [10]

f the quantitiespL andN have a common factor for any val
f p, there is a redundancy in the sampling even for the 1
simulation of a homonuclear system must take into acc

he highest order of coherence that must be sampled relia
he calculation. For a system of three or four spin1

2 nuclei, a
eliable simulation of the effects of a gradient pulse on
chievable order of coherence can be computed using a

oop (L 5 1) and five segments as a minimum.
Simulations of heteronuclear systems generate intere

omplications because of the different gyromagnetic ratio
he nuclei involved. Many heteronuclear experiments em
radients to cancel and reinforce the phases of two typ
uclei simultaneously; this requires that the arrangeme
elix loops and segments used for a simulation sampl

ntegral number of loops in the precession of each nuc
his can be arranged by (1) adjusting the ratio of the g
agnetic ratios for the pertinent nuclei to be a rational frac
nd (2) choosing the number of loops also to be in that r
onsider an HF spin system which has, to a good approx

ion, gF/gH 5 16/17. If 17 loops are chosen for the proton ph
elix during a particular gradient, then a phase helix for
uorine nuclei of 16 loops will develop during that sa
radient. Care must also be taken in choosing the numb
egments. IfN were chosen to be 16 in this proton–fluor
xample, then the fluorines would be aligned at the same
be
na-
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n their precessional motion in each loop; in effect, there w
e no sampling of phase at all for this nucleus.
The analog of Equation [10] for a heteronuclear system

uk 5 2p

$ O
a

in the coherence

ga%

gH

LH

N
k, k 5 0, 1, 2, . . . ,N 2 1,

[11]

FIG. 3. (A) Pulse sequence for a gradient double quantum filtered C
xperiment from Ref.31; (B) simulation of an experiment done with the pu
equence shown. The RF pulses were assumed to be ideal; the strength
rst and second gradients were 5 and 10 G/cm, respectively, and of dura
s. The four-spin model system used in the calculation has shiftsn1 5 200.0
z, n2 5 100.0 Hz,n3 5 2150.0 Hz,n4 5 2225 Hz, and coupling constan

12 5 J34 5 12.0 Hz,J13 5 J24 5 8.0 Hz,J14 5 0.0 Hz, andJ23 5 5.0 Hz.
he geometry was that of two adjacent methylene groups. Dipole–d
elaxation assuming a rotational diffusion constant of 5.03 108 s21 and
andom field effects with an interaction constant of 0.1 s21 were included. A
ingle free induction decay was calculated for eacht 1 value. A single loop with
8 phase angle segments was used. Acquisition was started immediate

he final 90° pulse (during the final gradient). The plots show positive
egative contours. All cross peaks appeared in absorption as expec
imilar calculation with five slices gave essentially the same results.
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190 MERESI ET AL.
here the sum is over the gyromagnetic ratios of all nu
nvolved in a coherence. Here we have usedLH to denote th
umber of loops for the protons. The number of segments

or the simulation (N) will have to be chosen so it is not a fa
f (¥ a g a)/gH for any coherence whose response to a gra
ust be computed correctly. Notice in particular that a he
uclear “zero quantum coherence” precesses at a Larmo
uency corresponding to the difference of the Larmor freq
ies of the nuclei involved.
As presently carried out, our computations are referenc

he laboratory coordinate system. Thus, a rotation desig

x(u ) is a rotation about the labx-axis. This must be reco
iled with the usual convention that a (u ) x pulse is a rotatio
f u about thex-axis in the frame rotating at the spectrome

requency for the nuclei of interest. We eliminate this prob
n a pragmatic way by arranging that every time interval in
imulation be an integral multiple of the Larmor period of
pectrometer frequency for each type of nucleus. Using

FIG. 4. (A) Pulse sequence for a1H{ 19F} heteronuclear NOE experim
uorobenzene was used. Atomic positions were computed from standar
romatic ring were used. The rotational correlation time was chosen to b
IDs are calculated and added, corresponding to the 90x90x and 90x902x phase
t 500 MHz for the model system described. (i) Calculated proton spec
ith 0.1, 0.8, and 2000 s mixing times. (The proton closest to the fluorine
ithout apodization. The 90° pulses used had a duration of 10ms. The grad
i

ed
r
nt
o-
re-
n-

to
ed

r

e

is

rocedure, all rotating frames are coincident with the lab fr
t the end of each interval in the simulation. We carry out
rrangement by choosing a small time step (on the ord
icroseconds) and require that every time interval in the
eriment is a multiple of that time step. The gyromagnetic r
f each nucleus is adjusted (slightly) so that its Larmor pe

s evenly divisible by the chosen time step. In practice,
roton frequency of the simulation is set to a round num
e.g., 500,000,000 Hz); the required adjustments in the g
agnetic ratios for other nuclei are less than the experim
ncertainties in those numbers.
In some experiments, certain time intervals are determ

y parameters of the spin system such as spin–spin cou
onstants. In these cases, we might have to adjust thos
ameters, so thatJ/ 2p, for example, will be an exact multip
f the chosen time step. Again, the necessary change
egligibly small.
A Fortran computer program based on the approache

t. A 3-spin model corresponding to the fluorine plus the 2- and 3-pro
ond lengths (34). Chemical shifts and coupling constants appropriate to a fluorin
5 ns, a value consistent with a protein of;30 kDa mass. For each mixing time, tw
mbinations for the last fluorine 90° pulses. (B) Calculated1H{ 19F} NOE spectra

of the system obtained with single proton 90° pulse; (ii–iv) spectra ofstem
ears upfield.) All plots have the same vertical scale. Computed FIDs weocessed

tsG1 andG2 were 10 and 20 G/cm; G3/G1 5 gF/gH.
en
d b
e 1
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191PULSED FIELD GRADIENTS IN SIMULATED NMR SPECTRA
cribed above was used to simulate some standard one
wo-dimensional high-resolution NMR experiments with g
ients. To assess our algorithm, the responses of spin sy

o a variety of simple sequences were tested. The output
est experiment [(p/ 2)x:Grad(t):fid] was 15 orders of magn
ude less than the result of the same simulation when
radient of lengtht was replaced by a simple free precess
elay of the same length. For any number of segments (N .
), the spins in segmentk will have precessed through 2pk/N

FIG. 5. (A) Pulse sequence for a C–H heteronuclear single quantum
0 and 200 Hz for H1 and H2, 2200 and 250 Hz for C1 and C2.

1JC1H1 5 12
ccumulated and added for eacht 1 step, one for each sign ofG2. D 5 1.89 m
2118 ppm,h(H) 5 20.0085,d zz(C) 5 2116 ppm,h(C) 5 20.431. Rotatio

o be ideal, and TPPI cycling of the first carbon 90° pulse was carried o
s. (B) The simulated spectra at 500 MHz. Transsections (i) and (ii) of th

pectrum of the12C isotopomer. Filled rectangles represent 90° pulses w
nd
-
ms
he

e
n

elative to k 5 0, so the total signal vanishes, to with
umerical roundoff error, because

O
k50

N21

sin 2p
k

N
5 O

k50

N21

cos 2p
k

N
5 0.

igure 2 shows the results of a simulation of a gradient-rec

herence experiment (HSQC) with the fragment H1–C1–C2–H2. Chemical shifts wer
z; 1JC2H2 5 140 Hz; 2JC1H2 5 2JC2H1 5 5 Hz; JHH 5 7 Hz. Two FIDs were

addition to dipole–dipole relaxation, CSA was included on H1 and C1: d zz(H)
l diffusion constants of 2.53 109 s21 were assumed. The RF pulses were cho
The gradients were 10.0 and 2.5 G/cm, respectively, and each had a du.0

map are taken at2200 and 250 Hz, respectively. Trace (iii) is the computed pr
empty rectangles represent 180° pulses on the top two lines.
co
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etween the dipole–dipole and CSA relaxation mechan
roduce significant lineshape effects. These are evide
omparison of spectrum (i) to spectra (ii) and (iii) in Fig.
imilar tests were performed to verify that multiple quan
oherences were also refocused correctly.
Pulsed field gradients can be used in COSY-type ex
ents for coherence selection and thereby provide a mea

educe the experimental time required because phase cyc
ot needed. The gradient homonuclear double-quantum fil
OSY experiment proposed by Daviset al. (31) was simulate

Fig. 3). A product operator description of the experiment le
o the term below for the density matrix in slicek for a
wo-spin system after the final gradient:

z 1
qz 2

q9e2i @~ p1p9!G11~q1q9!G2#gt~kdz!. [12]

ere z q are the raising (q 5 11), lowering (q 5 21), and
-component (q 5 0) spin operators; slices have thicknessdz,
o (k dz) is thez-coordinate; gradient strengths areG and their
uration ist; p, p9, q, andq9 are coherence orders. Focus
equires that the phases in various slices reinforce, so (p 1
9)G1 5 2(q 1 q9)G2 is required for these bilinear term
ignal is generated only forq 1 q9 5 1 during acquisition. In

he experiment shown,uG2u 5 2uG1u, so only those terms wit
1 p9 5 62 will be converted into single quantum coh

nce during acquisition. Because eitherp 1 p9 5 22 or p 1
9 5 12 (but not both) can be refocused by the choice of
or the second gradient, the resulting signal is attenuated
actor of 2 relative to the signal in a nongradient procedu

A variety of gradient-enhanced heteronuclear NOE ex
ents have been proposed: Especially useful ones are
roton-detected (“inverse”) type (32, 33), and these are o

nterest in attempts to detect1H{ 19F} NOEs in fluorine-con
aining biological systems. A scheme for using gradients to
nd is shown in Fig. 4. Fluorine coherences are labeled b
rst gradient and then converted toz-magnetization. Proton
uorine cross-relaxation transfers magnetization to the pro
he proton 90° pulse then rotates protonz-magnetization to th

ransverse plane, where it is refocused by the gradient la
3. In order for refocusing of proton coherences to be
essful, gradients G1 and G3 must be in the ratio of the pr
nd fluorine gyromagnetic ratios. A proton 180° pulse is
luded to refocus proton chemical shift evolution during
ecause a potential application of this sequence is in biolo
ystems where both dipolar and CSA effects cause rap
axation of the fluorine transverse magnetization, refocusin
uorine coherence is avoided during the first part of the
uence by setting the fluorine carrier frequency on reson
ith the fluorine signal. In spin coupled systems, IzSz-type
agnetization remains at the end of the second fluorine
nd is not removed by the gradient G2. This will conver
ntiphase components in the detected proton signal. Follo

he design of Stott and Keeler (33), additional fluorine pulse
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he sequence; alternate FIDs are added in which phases o
ulses are 90x90x and 90x902x, respectively, to cancel th
ntiphase components.
As discussed above, simulations of mixed fluorine and

rogen spin systems require careful consideration in those
f the calculation intended to represent the effects of gradi

n this example, we sample 17 loops of the phase helix fo
ydrogens, which concomitantly samples precisely 16 loo

he fluorine phase helix if the ratio of the gyromagnetic ra
s set to 16/17. For the present experiment, reliable sampli
ingle quantum coherences of either nucleus is all th
equired so that 3, 5, or 7 segments of the proton helix, or
umber of segments greater than 9, provide acceptable

ations. However, an error in either the strength or duratio
ny of the gradient pulses results in noticeably distorted
hapes.
The simulations shown in Fig. 4 were computed with “re

ulses, meaning that the spins are exposed to a specificB1 RF
eld switched on for a defined time, but calculations done
ideal” pulses (the effect of a pulse being calculated simpl
he effect of the appropriate rotation operator) were essen
uperimposable on these results. A rotational correlation
f 15 ns was used for the calculations—this is a typical v

or a macromolecule of mass;30 kDa. At a mixing time o
.1 s, an1H{ 19F} NOE of about 2.2% has developed at
roton closest to the fluorine, although spin diffusion eff
re already apparent. At 0.8 s, the spin diffusion process is
dvanced. At very long mixing times the (transient) N
hould return to zero, and this expectation is borne out in
imulations. Other experimental designs for1H{ 19F} hetero-
uclear NOEs that do not use gradients for coherence sele
ut only for purging unwanted magnetization are possible35);
e have shown that simulations of these are in accord

esults shown in Fig. 4.
A simulation of a 1H{ 13C} heteronuclear single quantu

oherence (HSQC) experiment is shown in Fig. 5. In desig
his simulation, again it was essential to recognize that
on-13 coherences in the presence of a gradient will trac

heir characteristic helix in a longer time than will pro
oherences at the same field strength. The single qua
oherence selection requires thatgCG1 5 6gHG2. The sim-
lation was carried out for a mixture of H–13C–C–H and
–C–13C–H with geometry and spin–spin coupling parame

hat are appropriate for a substituted alkane. CSA was incl
n one of the CH groups. The FIDs of the three isotopom
ere computed separately and added with weights of
–12C–12C–H and 1% of each of the13C-containing species, s
s to imitate the result of an experiment done at the na
bundance of carbon-13. The resulting spectrum displays
eaks at the expected (1H, 13C) positions; excellent cancell

ions of resonances from all protons not directly bound to13C
ere obtained. In particular, signals from H–12C–12C–H were
everal orders of magnitude less than those of the13C species
ifferences in cross peak shapes and intensities caused
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ontour map presentation, but the cross-sections includ
ig. 5 show that these effects are present.

CONCLUSIONS

We have outlined an approach for incorporatingz-axis
ulsed field gradients into simulations of high-resolution N
pectra. The methods used include conceptualization o
ample as a series of slices or volume elements alon
radient direction and make heavy reliance on propagato
ccelerate the calculations. These are extensions of our
us efforts, and the simulation program retains the abilit

ncorporate rigorous treatments of RF fields and several r
tion mechanisms. Numerous examples have shown th
pproach produces simulations rapidly using contempo
orkstations.
It is recognized that the representation of the effect

ulsed field gradients in this work is an idealization, and
xperiments with real spectrometers and samples will be

ect to inhomogeneities in the Zeeman andB1 fields, gradien
onlinearities, and timing errors. These experimental rea
ould be included in simulations by straightforward exten
f the present software. In the case of gradient inhomogen

he gradient field strengths could be made nonlinear in
-coordinate, and nonidealities in gradient shape could
imulated by computing the effects of several back-to-b
ideal) rectangular gradients chosen in a manner that repre
he nonidealities involved.

Diffusion of spins between volume elements has been
lected in this work, but could easily be incorporated (12).
iffusion would result in irreversible dephasing within a v
me element, leading to a reduction in refocused magnetiz

n the computed FID. At a cost of additional computing tim
he methods used could be extended to include other typ
radients such as triple-axis (x, y, z) gradients andB1 gradi-
nts, by taking into account the shape of a sample.
Although it is continuously evolving, the Fortran code

eloped in this work is available from the authors. An e
ersion of the code is available from QCPE (Program 66

APPENDIX A

Propagators

It is well known that the Liouville–von Neumann equat
an be solved if the Hamiltonian is independent of time a

s~t0 1 t! 5 e2iHt /\s~t0!e
iHt /\ [13]

r, for a specific density matrix element,

saa9~t0 1 t! 5 O
bb9

^aue2iHt /\ub&sbb9~t0!^b9ueiHt /\ua9&.

[14]
in

he
he
to
vi-
o
x-
the
ry

f
t
b-

s
n
ty,
e
e
k
nts

e-

on
,
of

-

ransformation (26, 27) using a propagatorP:

saa9~t0 1 t! 5 O
bb9

Paa9bb9~t!sbb9. [15]

quation [15] can be evaluated as a simple matrix multip
ion by reindexing the density matrix into a vector withj 5 (a

1)2n 1 a9, etc. Equation [15] then becomes

s j~t0 1 t! 5 O
k

Pjk~t!sk~t0!. [16]

he effect of successive steps in an experiment can be e
ted by successive multiplications, i.e.,

s2 5 @R z Q z P#s1, [17]

hereP, Q, and R are the propagators for three succes
ntervals in the pulse sequence.

A step including relaxation is not so straightforward, ho
ver, because the resultings(t 0 1 t) depends on more tha

ust a propagatorP(t) operating on the initial density matr
(t 0). Instead,

s~t0 1 t! 5 P~t!s~t0! 1 $1 2 P~t!%s `, [18]

heres` is the equilibrium density matrix. (In the presence o
F field, it becomes the steady-state (36–38) density matrix.) The

orm of Eq. [18] appears to thwart the simple multiplication
ropagators for successive steps. However, Smithet al. (28)
resented a mathematical trick that makes it possible to inc
ate the effect ofs` into a propagator as well. Here we explain
rocedure for implementing this step.
We begin by writing the Redfield equation which descr

he relaxation of the density matrix in the appropriate inte
ion representation (designated by ˆ) (21, 24, 28, 38):

d

dt
ŝaa9~t! 5 O

bb9

ei ~v̂aa92v̂bb9!tRaa9bb9~ŝbb9 2 ŝ bb9
` !. [19]

his equation is often solved by invoking the secular app
mation and then diagonalizing the Redfield matrixR. The
ecular approximation can be avoided by transforming o
he interaction representation. Eq. [19] then becomes

dsaa9

dt
5 O

bb9

~Raa9bb9 2 ivaa9dabda9b9!~sbb9 2 s bb9
` !. [20]

e define a generalized Redfield matrixR as

Raa9bb9 5 Raa9bb9 2 i v̂aa9dabda9b9 [21]
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ds j

dt
5 O

k

R jk~sk 2 s k
`!. [22]

n this form, it is evident that these differential equations
e solved readily ifR is diagonalized. This can be acco
lished by a similarity transformation

S21RS5 L 5 3
l1 0 · · · 0
0 l2 · · · 0

· · · · · · · · · z
0 0 · · · ln

4 [23]

nd Eq. [22] solved in terms of the transformation matrixSand
he transformed density matrixr; r l 5 ¥ k Slk

21s k. The matrice
andS21 are independent of time, soS21ds/dt 5 d/dtS21s
d/dtr. In terms ofr,

dr

dt
5 S21RS~r 2 r `!. [24]

r, in more detail and taking advantage of the diagona
ion:

dr l

dt
5 l l~r l 2 r l

`!. [25]

his is readily solved to give

r l~t! 5 r l
` 1 el l t~r l~0! 2 r l

`!. [26]

We can regenerates from s 5 Sr, noting that

sk~t! 5 s k
` 1 O

l

Skle
l l t O

j

Slj
21~s j~0! 2 s j

`!

5 O
lj

Skl~1 2 el l t!Slj
21s j

` 1 O
lj

Skle
l l tSlj

21s j~0!

5 O
lj

Skl$~1 2 el l t!Slj
21s j

` 1 el l tSlj
21s j~0!%. [27]

efineTln so that

O
n

Tlnsn~0! 5 O
j

~1 2 el l t!Slj
21s j

` [28]

nd reindex this to give

O
bb9

Taa9bb9sbb9~0! 5 O
gg9

~1 2 elaa9t!Saa9gg9
21 s gg9

` . [29]
n

-

1 (this condition can and must be arranged), we need

Taa9bb9 5 dbb9 O
gg9

~1 2 elaa9t!Saa9gg9
21 s gg9

` [30]

hen operating on any density matrix with unit trace,T has the
esired property:

O
bb9

Taa9bb9sbb9 5 Taa911Trace~s!

5 O
gg9

~1 2 elaa9t!Saa9gg9
21 s gg9

` . [31]

Therefore,

sk~t! 5 O
lj

Skl$Tlj 1 el l tSlj
21%s j~0!, [32]

hich enables us to define

Pkj ; O
l

Skl$Tlj 1 el l tSlj
21%, [33]

o that finally the density matrix can be propagated by op
ion only on the initial density matrix:

sk~t! 5 O
j

Pkjs j~0!. [34]

In detailed indexing,

Paa9bb9 5 O
gg9

Saa9gg9$dbb9 O
kk9

~1 2 elgg9t!Sgg9kk9
21 s kk9

`

1 elgg9tSgg9bb9
21 %, [35]

nd it is clear that propagators such as this can be multipli
andem to generate a single propagator for a sequence of

APPENDIX B

Calculation of FIDs

In a simulation the calculation of the acquired FID i
epetitive step that can be done efficiently with the propag
iscussed in Appendix A. The task at hand is to evaluate
bservable magnetizationM at equally spaced intervals

ime, the “dwell time”t d,

^M~ntd!& 5 Tr~Ms~ntd!! 5 O
aa9

M aa9
T saa9~ntd! [36]

lthough one could steps(0) through the FID collection usin



s(ntd) 5 P[s((n 2 1)t d)], there is a more economical way.
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egin with Eq. [27] evaluated at thenth point of the FID

sk~ntd! 5 s k
` 1 O

l

Skle
l lntd O

j

Slj
21~s j~0! 2 s j

`!. [37]

hus,

^M~ntd!& 5 Tr~Ms `! 1 O
k

M k
T O

l

Skle
l lntd

3 O
j

Slj
21~s j~0! 2 s j

`!. [38]

he last term in Eq. [38] is evaluated by rearranging
ummation and defining

Al ; O
k

M k
TSkl O

j

Slj
21~s j~0! 2 s j

`!, [39]

hich need be computed only once. The magnetization os`

s likely to be zero, but in any case it, too, needs to
omputed only once.
Thus,^M(ntd)& is evaluated with a single “vector” produ

^M~ntd!& 5 Tr~Ms `! 1 O
l

el lntdAl. [40]

he exponential is evaluated for the first dwell step and su
uent steps need only a multiplication@ell ~n11!td 5 el l ntdel l td#.
inally, as pointed out in Ref. (28), most matrix elements of th
perator corresponding to the observable magnetization
ally I2) vanish. Hence, most of the elements ofM are zero
nd the evaluation ofA is simplified further.
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