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A method for the inclusion of the effects of z-axis pulsed field
gradients in computer simulations of an arbitrary pulsed NMR
experiment with spin 3 nuclei is described. Recognizing that the
phase acquired by a coherence following the application of a z-axis
pulsed field gradient bears a fixed relation to its order and the
spatial position of the spins in the sample tube, the sample is
regarded as a collection of volume elements, each phase-encoded
by a characteristic, spatially dependent precession frequency. The
evolution of the sample’s density matrix is thus obtained by com-
puting the evolution of the density matrix for each volume ele-
ment. Following the last gradient pulse, these density matrices are
combined to form a composite density matrix which evolves
through the rest of the experiment to yield the observable signal.
This approach is implemented in a program which includes capa-
bilities for rigorous inclusion of spin relaxation by dipole-dipole,
chemical shift anisotropy, and random field mechanisms, plus the
effects of arbitrary RF fields. Mathematical procedures for accel-
erating these calculations are described. The approach is illus-
trated by simulations of representative one- and two-dimensional
NMR experiments.  © 1999 Academic Press

Key Words: coherence selection; dipole—dipole relaxation;
(DQFC) double quantum-filtered COSY; (HSQC) heteronuclear
single quantum coherence; NOE; propagators; pulsed field gradi-
ents; relaxation; relaxation cross terms; spectral simulation; spin
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INTRODUCTION

The use of pulsed field gradients in NMR experiments dat@ﬁnulation parameters are explored

back over decades to the work of Stejskal and Tanbewith

their seminal paper for the measurement of diffusion consta

Many years later, Maudslegt al. (2) and Baxet al. (3, 4)

demonstrated the use of gradients for coherence pathway
lection. Solution of a number of technical problems, primaril

suppression 13, 14, selective excitation 15), phase cycle
elimination or reduction, and artifact eliminatiob§, 17. Ba-
sic considerations in the use of pulsed field gradients have be
reviewed (2, 18, as has the application of gradients in mul-
tidimensional studies of biological systemi).

Hardware developments have now reached a stage whe
artifact-free multidimensional high-resolution NMR experi-
ments that use pulsed field gradients are routine. In contra:
available computer techniques for simulation of the results ¢
such experiments have not kept pace. Dozens of NMR sim
lation programs are, of course, available from instrument mar
ufacturers, from the World Wide Web, or by private arrange
ments. Most of these include relaxation in a honrigorous wa
(typically via an effectiveT, or T, relaxation time) or do not
provide capabilities to take into account other experimente
considerations such as finite RF power. We are unaware of al
computer simulation capabilities for experiments that include
pulsed field gradients and treat relaxation in a rigorous manne

The present work enables computer simulations of arbitrar
experiments that include nuclear spin relaxation effects (di
pole—dipole, chemical shift anisotropy, and random fielc
mechanisms, as well as cross terms between dipole—dipole a
CSA mechanisms), cw and pulsed RF fields, aakis pulsed
field gradients. In describing the approach taken, we firs
establish our notation and obtain analytical results for thi
effects of the pulsed field gradients on the density matrix. Ne»
the validity of our method and its dependence on variou
In the last section, w
illustrate the application of the code developed to simulation

F'several one- and two-dimensional spectra. It is conclude

that the rather straightforward approach we describe rapid
vides reliable simulations of high-resolution NMR experi-
ents that employ-axis pulsed field gradients.

the nonreproducibility of gradient pulses and the effect of

perturbing magnetic fields generated in nearby conductors by

eddy currentsy, 6), led to the pioneering work by Huret al.

(7, 8 and by van Zzijl and Moonen9( 10 that established the
efficacy of pulsed field gradients in high-resolution NMR ®Xyhich the spins may experience the application of variou
periments. Gradient experiments are now often the methodsS

choice for coherence pathway selecti@d (12, solvent signal

THEORETICAL BACKGROUND
Any NMR experiment is a sequence of time intervals during

tic or time-varying fields or may simply be undergoing
spontaneous processes such as Larmor precession or rel
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spins during each of these periods is calculated in series, |
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The first time-independent term consists of the Zeeman, scal
coupling, and isotropic chemical shielding terms:

spins

Ho= =By X vi[1 — os(i)114(0)

spins spins

+ 22 JeliDQ) - 1)) [2]

[

The second term in Eq. [1] describes the interaction of th
spins with the external magnetic field gradient; it is different

FIG. 1. A representation of the orientations of a collection of magnetizg-or each slice, and for thkth slice it is given by

tion vectors following the application of a 90° pulse and a pulsed field gradient.
The pitch of the helix is determined by the gradient pulse length, the gradient
strength, and the gyromagnetic ratio of the spins.

spins

Ho(k) = =7 Gz(k) E Y1 = o)1), 3]

following the evolution of the density matrix. A field gradient

pulse is an interval during which the static external magne

field is rendered deliberately spatially inhomogeneous. We

consider only linear gradients along theaxis. Hence, the

gradient field can be written &z, with G being the (constant)

gradient strength in tesla/meter, and theoordinate is mea-

sured in meters. The effect of the gradient can be visualized

recognizing that at each value nfthe sample experiences a _ _

characteristic magnetic field during the gradient pulse. The Hi(t) = —7iBe "M e~ 1P, [4]

precession rate of a coherence will depend orztheordinate

so that after a gradient pulse of duratienthe phase of a whereB, is the amplitude of the RF field, aifdl; is its angular

p-quantum coherence will be arranged in a helical pattefrequencyM , is the component of the magnetic moment alonc

whose pitch is determined byGrp, with y being the gyro- ¢ in thexy-plane and is related to the spin angular momentur

magnetic ratio of the nucleud &, 20. This effect of a linear operators by

z-axis gradient is illustrated in Fig. 1.

For a simulation, we divide the region of interest irto spins

segments and follow the density matrix(k) for the kth _ 1 (iyp-t

segment (0= k = [N — 1]) through the experiment. No Ms = Re(¢) EI: YRz (), 5]

spatial inhomogeneity is generated in the sample until the first

grad?ent pulse, and up to that pointin the ;imulgtion the dens{/%ereRz(qb) = e "Fh_ The remaining term in Eq. [1] is

matrices of all volume elements will be identical and essenr . . . . )

. . . . . also time-dependent and arises from interactions that ce

tially equal to the density matrix representing the entire sam- . .
) . . produce spin relaxation.

ple. Calculation of evolutions in response to pulses, delays, or.

. . . The time evolution of the nuclear spin density matrix i
other gradient pulses after the first gradient pulse proceeds for e time evolution of the nuclear spin density matrix is

each slice separately. At the end of the final gradient, tﬁgverned by the Liouville-von Neumann equati@0 £29:
density matrices from th&l segments are combined to yield
the complete system density matrix. Calculation of the evolu- i% do =[H, o] 6]
tion of the complete density matrix generates the expected at T
detectable signal. Performing the summation over segments
prior to the final gradient results in loss of memory of the phaselncluding the effects of relaxation in the solution of this
encoding that is indicated in Fig. 1. equation is computationally costly, typically requiring the di-
The full Hamiltonian for a nuclear spin system in the presagonalization of a Redfield26) matrix of dimensions 2 X
ence of a static external magnetic field, magnetic field gradi#", with n being the number of nuclei in the spin system.
ents, and a radiofrequency field can be written23-24 Especially because our treatment of gradients requires tt
solution of Eq. [6] separately for each slice along thaxis in
H(t) = Hy + Hg + Hy(t) + Hy(t). [1] the sample, an efficient procedure must be devised for th

hereG is the strength of the magnetic field gradient a(ik)
notes the-coordinate of théth slice in the sample tube. It
is worth noting that the gradient Hamiltonian has the sam
form as the Zeeman term except for its dependence on coc
dinatez. The third term in Eq. [1] describes the interaction of
W spins with the radiofrequency pulses,
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FIG. 2. (A) Pulse sequence used for simulation of a phosphorus gradient-recalled echo experiment with the protein-bound fluorophosphate (P-F)
described by Witherst al. (29). The phosphorus frequency was 109 MHz, CSA parameters for fluorine and phosphorus were taken from the compilati
Duncan 80), andJ, = —890 Hz. A rotational correlation timerf) of 73 ns and gradients a2 G/cm with 20 slices were used for the simulations. (B)
Lineshapes obtained by Fourier transformation of the FID calculated for this system: (i) Fluorine and phosphorus CSA and dipolar contriblai@t®io re
are included, but cross terms between dipole and CSA terms are neglécte@,2 ms; (ii) all fluorine and phosphorus CSA and dipolar contributions tc
relaxation are computed, including dipole—CSA cross te@dns;0.2 ms; (iii) the same as for simulation (i), béit= 2.0 ms. The vertical scale is the same for
all plots. The observed lineshape is in rough accord with experimental observations.

purpose. Use of superoperator propagators is crucial in makuohensity matrix at the start of that step. Thus, our density matri
this problem tractable, because it simplifies computation of tlae the end of the three preliminary steps is

evolution of the density matrix to a simple matrix multiplica-

tion for'each slice 46, 27). The extension of propagator meth- 0=PP,P10eq [7]
ods to include relaxation was presented by Sreitfal. (28).

We discuss the relaxation propagator and explain our PrO%scause a gradient pulse has a different effect on each slice

dure for its implementation in Appendix A. .
. ; _ the sample, the propagator for a gradigifk) depends on the
Computatlon .Of an FID, QOne pomt-by-pomt,' IS an'otheé ice indexk. Hence, the density matrix after the first gradient
repetitive and time-consuming aspect of the simulation

NMR experiments that is fruitfully approached in terms of :%SO depends upoki

propagator. Appendix B describes our application of propaga-

tors to this situation. (k) = Gu(K)P PP 10eq (8l

If our initial gradient is followed by three more steps and ther

COMPUTATIONAL STUDIES a final gradient, the density matrix for the complete system ¢
the end of this entire sequence is the combination of the densi

It is helpful to consider an example in order to show hovr\patrlces in each segment.

propagator techniques have been applied in this work to sim-

ulations of experiments involving gradient pulses. Suppose the N-1 Oeq
experiment begins with the system at equilibrium and consists o= 2 [GAK)P PP G (KPP, P,] N )
of three steps (pulses and/or delays) before the initial gradient. k=0

The effect of each step in the sequence is simply the matrix
multiplication of the propagator for that steép; times the This combined density matrix can then be followed through th
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rest of the experiment. Throughout the calculation, efficiencies A
can be introduced. The propagator for any step that is to be 00 " 150 ool
repeated can be stored and reused; this includes any combina- RF . . 2 .
tions of repeated steps. For example, the producp gp:, l ty l
can be evaluated and included as a single matrix multiplication.

In a simulation the entire range of phases produced by the .4
gradients must be sampled, because it is through the cancella-
tions and reinforcements of these phases that the gradients
experimentally have their effect. Thus, in implementing Eq.
[9], the simulation must sample the range of phases from 0 to B
2mmr. An integral number of loopsn of the helix must be MM MM
included in order to sample these phases uniformly. It is also MM

evident from Fig. 1 that additional loops of a particular helix of

phase angles, e.g.712< ¢ = 4w, are redundant with the first  ny — —

loop. Consequently, full phase sampling might be achieved & 8 = =

with surprisingly few slices. However, the number of helix

loops and the number of segments required to sample phases wl N .
reliably depend on the details of the spin system under con- i..! % o ¥§‘

sideration. -
For a homonuclear system, single quantum coherendss
(1QC) precess at the slowest rate, so as a 1QC precesse®-
through 27, a homonuclear coherence of orgetpQC) pre- T
cesses through@r. If we let L be the number of loops usedV.
to represent a 1QC, the phase angles sampled for a simulation

usingN segments are (for pQC) -

Frretd
=4

1

—
e
-

1
2mplL e . - g
=N K k=01,2,... N—-1 [10] o = =5
y 200 0 -200
If the quantitiepL andN have a common factor for any value Fl (Hz)

of p, there is a redundancy in the sampling even for the 1QC. _ _
A simulation of a homonuclear system must take into accounf’!G- 3. (A) Pulse sequence for a gradient double quantum filtered COS?

the highest order of coherence that must be sampled re”abl)fmenment from Ref31; (B) simulation of an experlmenF don'e with the pulse
'sequence shown. The RF pulses were assumed to be ideal; the strengths of

the calculation. For a system of three or four S%)m”de'v a first and second gradients were 5 and 10 G/cm, respectively, and of duratior
reliable simulation of the effects of a gradient pulse on anys. The four-spin model system used in the calculation has shifts 200.0
achievable order of coherence can be computed using a sirtgder. = 100.0 Hz,v; = —150.0 Hz,», = —225 Hz, and coupling constants
loop (L = 1) and five segments as a minimum. Jiz = Jau = 12.0 Hz,J35 = o0 = 8.0 Hz,J;, = 0.0 Hz, and);; = 5.0 Hz.

Simulations of heteronuclear systems generate interestifjg 9e°metry was that of two adjacent methylene groups. Dipole—dipol
refdxation assuming a rotational diffusion constant of %010° s™* and

complications because of the different gyromagnetic ratios Qfqom field effects with an interaction constant of 0.1 ere included. A
the nuclei involved. Many heteronuclear experiments empl@ygle free induction decay was calculated for eaaralue. A single loop with
gradients to cancel and reinforce the phases of two typeslafphase angle segments was used. Acquisition was started immediately af
nuclei simultaneously; this requires that the arrangement ¥ 0 0 FE°S S8 (1 o opeared I absorpion a3 expeced
helIX loops and segmentg used for a S,ImU|at|0n sample sréllmilar calculation with five inEes gavepzssentially the ssme results.p
integral number of loops in the precession of each nucleus.

This can be arranged by (1) adjusting the ratio of the gyro-

magnetic ratios for the pertinent nuclei to be a rational fractiotfl their precessional motion in each loop; in effect, there woul
and (2) choosing the number of loops also to be in that rati¢ no sampling of phase at all for this nucleus.

Consider an HF spin system which has, to a good approxima-The analog of Equation [10] for a heteronuclear system is

tion, ye/yy = 16/17. If 17 loops are chosen for the proton phase

helix during a particular gradient, then a phase helix for the in the coherence

fluorine nuclei of 16 loops will develop during that same > Yot

gradient. Care must also be taken in choosing the number of a Ly

segments. IN were chosen to be 16 in this proton—fluorine O = 2m vy N k, k=0,1,2,... ,N-1,

example, then the fluorines would be aligned at the same point [11]
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FIG. 4. (A) Pulse sequence for tH{*°F} heteronuclear NOE experiment. A 3-spin model corresponding to the fluorine plus the 2- and 3-proton:
fluorobenzene was used. Atomic positions were computed from standard bond I&@#yti&hemical shifts and coupling constants appropriate to a fluorinate
aromatic ring were used. The rotational correlation time was chosen to be 15 ns, a value consistent with a pr@@ikDH mass. For each mixing time, two
FIDs are calculated and added, corresponding to the®Gnd 9Q90_, phase combinations for the last fluorine 90° pulses. (B) Calcul&tgtiF} NOE spectra
at 500 MHz for the model system described. (i) Calculated proton spectrum of the system obtained with single proton 90° pulse; (ii—iv) spectstenf the
with 0.1, 0.8, and 2000 s mixing times. (The proton closest to the fluorine appears upfield.) All plots have the same vertical scale. Computed Fl€esaede p
without apodization. The 90° pulses used had a duration qislOThe gradient&; and G, were 10 and 20 G/cm; B5; = ye/yu.

where the sum is over the gyromagnetic ratios of all nuclprocedure, all rotating frames are coincident with the lab fram
involved in a coherence. Here we have usedo denote the at the end of each interval in the simulation. We carry out thi
number of loops for the protons. The number of segments usadangement by choosing a small time step (on the order ¢
for the simulation (N) will have to be chosen so it is not a factanicroseconds) and require that every time interval in the ex
of (2. va)/vw for any coherence whose response to a gradigmriment is a multiple of that time step. The gyromagnetic rati
must be computed correctly. Notice in particular that a heterof each nucleus is adjusted (slightly) so that its Larmor perio
nuclear “zero quantum coherence” precesses at a Larmor fgeevenly divisible by the chosen time step. In practice, th
guency corresponding to the difference of the Larmor frequeproton frequency of the simulation is set to a round numbe
cies of the nuclei involved. (e.g., 500,000,000 Hz); the required adjustments in the gyre
As presently carried out, our computations are referencedn@mgnetic ratios for other nuclei are less than the experiment
the laboratory coordinate system. Thus, a rotation designatettertainties in those numbers.
R.(0) is a rotation about the lak-axis. This must be recon- In some experiments, certain time intervals are determine
ciled with the usual convention that @), pulse is a rotation by parameters of the spin system such as spin—spin coupli
of 6 about thex-axis in the frame rotating at the spectrometeronstants. In these cases, we might have to adjust those |
frequency for the nuclei of interest. We eliminate this problemameters, so thal/ 27, for example, will be an exact multiple
in a pragmatic way by arranging that every time interval in thef the chosen time step. Again, the necessary changes e
simulation be an integral multiple of the Larmor period of thaegligibly small.
spectrometer frequency for each type of nucleus. Using thisA Fortran computer program based on the approaches d
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FIG. 5. (A) Pulse sequence for a C—H heteronuclear single quantum coherence experiment (HSQC) with the fragBief+H,. Chemical shifts were
50 and 200 Hz for Hand H, —200 and 250 Hz for Cand G. ey = 125 Hz; " Jeome = 140 Hz;2Jcime = 2Jeam = 5 Hz; Iy = 7 Hz. Two FIDs were
accumulated and added for edglstep, one for each sign &,. A = 1.89 ms. Inaddition to dipole—dipole relaxation, CSA was included oradd G: §,,(H)
= —118 ppmm(H) = —0.0085,5,,(C) = —116 ppmmn(C) = —0.431. Rotational diffusion constants of 2¢510° s * were assumed. The RF pulses were choser
to be ideal, and TPPI cycling of the first carbon 90° pulse was carried out. The gradients were 10.0 and 2.5 G/cm, respectively, and each had a.@urati
ms. (B) The simulated spectra at 500 MHz. Transsections (i) and (ii) of the 2D map are tak2@aand 250 Hz, respectively. Trace (iii) is the computed proton
spectrum of the”C isotopomer. Filled rectangles represent 90° pulses while empty rectangles represent 180° pulses on the top two lines.

scribed above was used to simulate some standard one- eeidtive tok = 0, so the total signal vanishes, to within
two-dimensional high-resolution NMR experiments with graaumerical roundoff error, because

dients. To assess our algorithm, the responses of spin systems

to a variety of simple sequences were tested. The output of the

test experiment [/ 2),:Gradg):fid] was 15 orders of magni- Nil . k B Nil k B
tude less than the result of the same simulation when the = sin 2m = = cos 2m = 0.

gradient of lengthr was replaced by a simple free precession
delay of the same length. For any number of segmexts-(
1), the spins in segmektwill have precessed throughn®/N  Figure 2 shows the results of a simulation of a gradient-recalle
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echo sequence applied to a syste?§) (where cross terms are therefore present at the start of the proton detection part
between the dipole—dipole and CSA relaxation mechanistige sequence; alternate FIDs are added in which phases of th
produce significant lineshape effects. These are evidentpulses are 9®0, and 9Q90_,, respectively, to cancel the
comparison of spectrum (i) to spectra (ii) and (iii) in Fig. 2antiphase components.
Similar tests were performed to verify that multiple quantum As discussed above, simulations of mixed fluorine and hy
coherences were also refocused correctly. drogen spin systems require careful consideration in those pa
Pulsed field gradients can be used in COSY-type expeaofthe calculation intended to represent the effects of gradient
ments for coherence selection and thereby provide a meangntthis example, we sample 17 loops of the phase helix for th
reduce the experimental time required because phase cyclingydrogens, which concomitantly samples precisely 16 loops ¢
not needed. The gradient homonuclear double-quantum filtetlae fluorine phase helix if the ratio of the gyromagnetic ratio:
COSY experiment proposed by Dawsal. (31) was simulated is setto 16/17. For the present experiment, reliable sampling
(Fig. 3). A product operator description of the experiment leadingle quantum coherences of either nucleus is all that
to the term below for the density matrix in slide for a required so that 3, 5, or 7 segments of the proton helix, or ar
two-spin system after the final gradient: number of segments greater than 9, provide acceptable sin
lations. However, an error in either the strength or duration ¢
any of the gradient pulses results in noticeably distorted line

479 a—il(p+p")Gi+(a+q’')Gzlyr(kéz)
tize : [12] shapes.
The simulations shown in Fig. 4 were computed with “real”
Here {" are the raisingd = +1), lowering @ = —1), and pulses, meaning that the spins are exposed to a spBegifi-

z-componentd = 0) spin operators; slices have thicknégs field switched on for a defined time, but calculations done witt
so (k 82) is thez-coordinate; gradient strengths &eand their “ideal” pulses (the effect of a pulse being calculated simply a
duration isT; p, p’, g, andq’ are coherence orders. Focusinghe effect of the appropriate rotation operator) were essential
requires that the phases in various slices reinforce,psa-( superimposable on these results. A rotational correlation tinr
p')G; = —(q + q')G, is required for these bilinear terms.of 15 ns was used for the calculations—this is a typical valu
Signal is generated only far + q" = 1 during acquisition. In for a macromolecule of mass30 kDa. At a mixing time of

the experiment shownG,| = 2|G,|, so only those terms with 0.1 s, an'H{ **F} NOE of about 2.2% has developed at the
p + p’ = *=2 will be converted into single quantum coherproton closest to the fluorine, although spin diffusion effect:
ence during acquisition. Because eitpet- p' = —2 orp + are already apparent. At 0.8 s, the spin diffusion process is we
p’ = +2 (but not both) can be refocused by the choice of sigadvanced. At very long mixing times the (transient) NOE
for the second gradient, the resulting signal is attenuated bgleould return to zero, and this expectation is borne out in th
factor of 2 relative to the signal in a nongradient proceduresimulations. Other experimental designs fét{ *°*F} hetero-

A variety of gradient-enhanced heteronuclear NOE experitclear NOEs that do not use gradients for coherence selectic
ments have been proposed: Especially useful ones are of e only for purging unwanted magnetization are possiB; (
proton-detected (“inverse”) type32, 33, and these are of we have shown that simulations of these are in accord wit
interest in attempts to detedt{ *F} NOEs in fluorine-con- results shown in Fig. 4.
taining biological systems. A scheme for using gradients to thisA simulation of a'H{**C} heteronuclear single quantum
end is shown in Fig. 4. Fluorine coherences are labeled by tt@herence (HSQC) experiment is shown in Fig. 5. In designin
first gradient and then converted zemagnetization. Proton— this simulation, again it was essential to recognize that ca
fluorine cross-relaxation transfers magnetization to the protoh®n-13 coherences in the presence of a gradient will trace o
The proton 90° pulse then rotates prommmagnetization to the their characteristic helix in a longer time than will proton
transverse plane, where it is refocused by the gradient labetatherences at the same field strength. The single quantt
G3. In order for refocusing of proton coherences to be suceherence selection requires thalc, = *+v,,G,. The sim-
cessful, gradients G1 and G3 must be in the ratio of the protalation was carried out for a mixture of H€—C-H and
and fluorine gyromagnetic ratios. A proton 180° pulse is irdi—C—°C—H with geometry and spin—-spin coupling parameter
cluded to refocus proton chemical shift evolution during G3hat are appropriate for a substituted alkane. CSA was includ
Because a potential application of this sequence is in biological one of the CH groups. The FIDs of the three isotopomel
systems where both dipolar and CSA effects cause rapid vgere computed separately and added with weights of 98¢
laxation of the fluorine transverse magnetization, refocusing lt-""C—?C—H and 1% of each of th€C-containing species, so
fluorine coherence is avoided during the first part of the sas to imitate the result of an experiment done at the natur
guence by setting the fluorine carrier frequency on resonarafgundance of carbon-13. The resulting spectrum displays crc
with the fluorine signal. In spin coupled systemsStype peaks at the expectedH, *C) positions; excellent cancella-
magnetization remains at the end of the second fluorine putims of resonances from all protons not directly bound®®
and is not removed by the gradient G2. This will convert taere obtained. In particular, signals from ¥c—*C—-H were
antiphase components in the detected proton signal. Followisgyeral orders of magnitude less than those of #especies.
the design of Stott and KeeleB3), additional fluorine pulses Differences in cross peak shapes and intensities caused by |
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CSA-—dipolar cross-relaxation are difficult to observe in thi superoperator space, Eq. [14] can be expressed as a sin
contour map presentation, but the cross-sections includedtriansformation 26, 27 using a propagatdp:
Fig. 5 show that these effects are present.

o-mx’(tO + t) = E Paa’BB'(t)o-Bﬁ" [15]
CONCLUSIONS BB’

We have outlined an approach for incorporatis@xis Equation [15] can be evaluated as a simple matrix multiplica
spectra. The methods used include conceptualization of the1yon 4 ' etc. Equation [15] then becomes

sample as a series of slices or volume elements along the
gradient direction and make heavy reliance on propagators to
accelerate the calculations. These are extensions of our previ-
ous efforts, and the simulation program retains the ability to

incorporate rigorous treatments of RF fields and several relax- . . .

ation mechanisms. Numerous examples have shown that he. effect of successive steps in an experiment can be eva
. : : . ated by successive multiplications, i.e.,

approach produces simulations rapidly using contemporary

workstations.

It is recognized that the representation of the effects of
pulsed field gradients in this work is an idealization, and that )
experiments with real spectrometers and samples will be sy1ereP, Q, andR are the propagators for three successiv:
ject to inhomogeneities in the Zeeman adfields, gradient intervals in the pulse sequence. _
nonlinearities, and timing errors. These experimental realities” Step including relaxation is not so straightforward, how-
could be included in simulations by straightforward extensid#/€l, because the resultingt, + t) depends on more than
of the present software. In the case of gradient inhomogeneifyst @ propagatoP(t) operating on the initial density matrix
the gradient field strengths could be made nonlinear in tFéto). Instead,

z-coordinate, and nonidealities in gradient shape could be

oj(to + 1) = > Pi(D) o (to). [16]
k

o, =[R-Q-PJoy, [17]

simulated by computing the effects of several back-to-back a(to+1) =P)oa(ty) + {1 - P()}o", [18]
(ideal) rectangular gradients chosen in a manner that represents
the nonidealities involved. whered™ is the equilibrium density matrix. (In the presence of an

Diffusion of spins between volume elements has been rieF field, it becomes the steady-ste26 {39 density matrix.) The
glected in this work, but could easily be incorporatd@)( form of Eq. [18] appears to thwart the simple multiplication of
Diffusion would result in irreversible dephasing within a volpropagators for successive steps. However, Smitlal. (28)
ume element, leading to a reduction in refocused magnetizatimesented a mathematical trick that makes it possible to incorp
in the computed FID. At a cost of additional computing timerate the effect oé™ into a propagator as well. Here we explain our
the methods used could be extended to include other typespadcedure for implementing this step.
gradients such as triple-axix,(y, z) gradients andB, gradi- We begin by writing the Redfield equation which describe:
ents, by taking into account the shape of a sample. the relaxation of the density matrix in the appropriate interac

Although it is continuously evolving, the Fortran code detion representation (designated by 2)1( 24, 28, 38
veloped in this work is available from the authors. An early

version of the code is available from QCPE (Program 660). d _ o . A
dt O (t) = E el(wwliwBB')IRaa'Bﬁ'(U'BB' - 0'5[3')- [19]
APPENDIX A pE
Propagators This equation is often solved by invoking the secular approx

imation and then diagonalizing the Redfield matRx The

Itis well known that the Liouville-von Neumann equationsecylar approximation can be avoided by transforming out ¢
can be solved if the Hamiltonian is independent of time as {he interaction representation. Eq. [19] then becomes

g(to +1) = e—th/ﬁU(tO)eth/ﬁ [13] do,.. . i
dt = E (Raa'BB’ - Iwaa’SaBSa’B’)(O—Bﬁ’ - UBB’)' [20]
BB’

or, for a specific density matrix element,

Toulto + 1) = 3 (ale M Byay, (t)(B'|€M]a’). We define a generalized Redfield matiixas
BB’ . .
[14] Jlmy’BB' = Raa’BB’ - Iwaa’SﬂBSH'B’ [21]
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and begin by reindexing Eq. [20] to read

d0'

- Z RJk(O'k ) [22]

MERESI ET AL.

Taking advantage of the trace of the density makjx 6,
= 1 (this condition can and must be arranged), we need

Oppr E (1-e™")S. w v

Y

Taa’BB [30]

In this form it is evident that these differential equat|0ns Carhen Operat|ng on any dens|ty maitrix with unit trafd’)as the
be solved readily ifit is diagonalized. This can be accomqyesired property:

plished by a similarity transformation

Ay 0O --- 0
A
sMis=A=| . % [23]
0 0 - - A,

and Eq. [22] solved in terms of the transformation ma&end
= 3, Si'o. The matrices

the transformed density matrjx p,
SandS ! are independent of time, ® 'do/dt = d/dtS o
= d/dtp. In terms ofp,

dp

di = STMS(p — p7). [24]

z Taa’BB'O-BB’ = Taa’llTraCdo-)
BB’
=2 (1—-e™hS.t,, 5. [31]
Y
Therefore,
o (t) = 2 S(I{le + eA'tSHl}UJ‘(O), [32]
I
which enables us to define
[33]

Py = 2 STy + e)\'tsﬁl},
I

Or, in more detail and taking advantage of the diagonaliza-

tion:

dpy
dt = Mo e [25]
This is readily solved to give
pi(t) = pi” + e*(pi(0) — p7). [26]
We can regenerate from o = Sp, noting that
olt) = o + 2 Se™ 2 S (0y(0) — o))
[ i
= 2 Su(1—e")S;tof + 3 See"'S;to;(0)
lj lj
= > Sl —e"S;ter + eMSlay(0)}.  [27]
l
DefineT,, so that
2 Thow(0) = X (1 - Sty (28]
n i
and reindex this to give
2 Tewpp0pp(0) = M) S gy @y [29]

> (l-e

BB’

so that finally the density matrix can be propagated by oper:
tion only on the initial density matrix:

O'k(t) = 2 ijffj(o)- [34]
j
In detailed indexing,
PO‘O‘/BB z Saot VV{SﬁB Z (1 - e)\Wl)Syy KK' :K’
vy KK'
+eM'S et [35]

and it is clear that propagators such as this can be multiplied
tandem to generate a single propagator for a sequence of ste

APPENDIX B

Calculation of FIDs

In a simulation the calculation of the acquired FID is a
repetitive step that can be done efficiently with the propagatol
discussed in Appendix A. The task at hand is to evaluate th
observable magnetizatiohl at equally spaced intervals of
time, the “dwell time”t,,

(M(nty)) = Tr(Ma(nty) = X, M1, 04 (Nty)

aa’

[36]

Although one could step(0) through the FID collection using
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o(nty) = P[a((n — 1)ty)], there is a more economical way. 8.

Begin with Eq. [27] evaluated at th&th point of the FID
9.

olnty = oy + 2 S E S,}l(oj(O) - O-jw)- [37] 10.
| i
11.

Thus, 12

(M(nty) = Tr(Ma™) + X, My >, Seelne

k |

X 2 S;M(0(0) — o). [38]

16
The last term in Eq. [38] is evaluated by rearranging thg,
summation and defining

A= 2 MIS 2 S;(0y(0) — a7), [39] 18
k j

19.

which need be computed only once. The magnetizatiom™of 20.
is likely to be zero, but in any case it, too, needs to be
computed only once. 1

Thus,(M(nt,)) is evaluated with a single “vector” product, ™

(M(nty)) = Tr(Mo™) + > entoa,. [40] °
| 23.

The exponential is evaluated for the first dwell step and subga-
quent steps need only a multiplicatipa™ ™"Vt = gtintghita]

Finally, as pointed out in Ref2g), most matrix elements of the 25
operator corresponding to the observable magnetization (tygh-
cally 1.) vanish. Hence, most of the elementshdfare zero, 27.
and the evaluation oA is simplified further. "
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